深圳市亚锐智能科技有限公司
深圳市福田区沙头街道天安社区泰然六路泰然苍松大厦五层北座501-3
(86)755 8272 2836
Robert
14137848
zzqrob
Sales@szarray.com.cn
大家好,关于ct 设备原理很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于ct取电电路工作原理是什么的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!
本文目录
CT取电(感应取电)电源,即利用安装在电力线路上的CT通过电磁感应原理获得电源的一种装置,它由取电CT(取能互感器)和电源转换模块(将CT取得的电能量转化为所需要的直流电压)两部分组成。
在高压、超高压及特高压输电领域,导线可能流经巨大的短时故障电流,这时电流感应电源需加装专门配套的限流器。CT取电电路,用于获取经CT变换而来的电流信号,
并将其转换为稳定的3.
3V(或5V,12V等)直流电压,CT取电电路包括整流滤波电路、DC/DC模块电路、过压保护电路、掉电检测电路和后备电池电路,其中高压线路的电流经过电流传感器、防浪涌保护电路后分别进入信号变换电路、CT取电电路以及整流滤波电路,整流滤波电路的输出端连接DC/DC模块电路、过压保护电路和掉电检测电路,DC/DC模块电路的输出端输出3.3V(或5V,12V等)直流电压,掉电检测电路的输出端控制后备电池电路是否向整个系统输出电压。
CT取电(感应取电)电源主要应用于电力线路上,可以解决因设备无法获得其它方式供电的问题。1)高压输配电领域:电流感应电源主要用于缺乏常规供电措施的高压输配电领域,在输配电网中,电压高至10kV-1150kV,工作电流达数十安至数千安,虽有巨大的电能传输,许多智能化电子设备却因缺电而无法安装,或不得不配置昂贵笨重的太阳能或风能发电设备,犹如长江边上无水可饮。
2)
智能电网领域:随着智能电网的开展,在高压一次设备上(如架空输电线、电缆、环网柜等)加装智能电子设备的需求增强,电流感应电源的应用日趋广泛,
包括但不限于:配电自动化、智能环网柜、架空输电线及电缆监控、高压带电维护工具及其它各种拓展应用(如野外通信基站、高压输电线指示灯等),如:智能开关柜配套电源,环网柜及输配电监测电源,故障指示器配套专用电源等等。
CT取电(感应取电)具体应用:配电自动化(配电线路故障指示器),户外智能开关柜,电力在线监测系统(高压输电监控,电缆状态监控),电力无线测温系统,有源电子互感器,高压带电作业工具,其他高压输电线上电子设备(如高压输电线指示灯等)等等。
CT取电(感应取电)电源采用超宽电压DC-DC转换器(如13V-380V宽输入的PI-05V-B4等),能够确保在一次侧电流较大的变化范围内(比如15A~8000A),
CT取电电源都能够给电子线路提供稳定的电压。母线电流跟随线路负载的变化而在很大的范围变化,使二次侧的感应电压也随之在很大的范围变化,给
CT取电电源的设计带来很大的难度,宽电压DC-DC转换器可以实现在较大的输电线电流变化范围内该 CT取电装置工作正常、输出稳定,
避免发生电流互感器严重发热现象,且电路简单,成本低。
CT(简称)正常工作的时候,次级所接负载为继电器电流线圈等等阻抗很小的东东,基本上属于运行在短路状态。于是由一次电流和次级电流所产生的磁通相互去磁,使铁芯中的磁通密度较低(在0.1T以下),次级电压也很低。2、当次级绕组开路而一次电流不变,在次级电流为0的情况下,它的去磁磁通也没有了。这时候一次电流全部变为励磁电流,使铁心饱和(突变的),它的磁通密度高达1.8T以上。3、出现了第2种情况后,简单说点后果吧:A次级产生数千伏电压,对次级绝缘可能击穿,对人员和设备有危险。B铁芯突变饱和则损耗增加,铁芯会发热,容易破坏绝缘。C使计量失准,因为磁通的变化太高会在铁芯中产生剩磁,CT比差和角差加大。
一、PET显像的基本原理
PET是英文 Positron Emission Tomography的缩写。其临床显像过程为:将发射正电子的放射性核素(如F-18等)标记到能够参与人体组织血流或代谢过程的化合物上,将标有带正电子化合物的放射性核素注射到受检者体内。让受检者在PET的有效视野范围内进行 PET显像。放射核素发射出的正电子在体内移动大约1mm后与组织中的负电子结合发生湮灭辐射。产生两个能量相等(511 KeV)、
方向相反的γ光子。由于两个光子在体内的路径不同,到达两个探测器的时间也有一定差别,如果在规定的时间窗内(一般为 0-15 us),探头系统探测到两个互成180度(士0.25度)的光子时。即为一个符合事件,探测器便分别送出一个时间脉冲,脉冲处理器将脉冲变为方波,符合电路对其进行数据分类后,送人工作站进行图像重建。便得到人体各部位横断面、冠状断面和矢状断面的影像。
PET系统的主要部件包括机架、环形探测器、符合电路、检查床及工作站等。探测系统是整个正电子发射显像系统中的主要部分,它采用的块状探测结构有利于消除散射、提高计数率。许多块结构组成一个环,再由数十个环构成整个探测器。每个块结构由大约36个锗酸铋(BGO)小晶体组成,晶体之后又带有2对(4个)光电倍增管(PMT)(请看图1)。BGO晶体将高能光子转换为可见光.PMT将光信号转换成电信号,电信号再被转换成时间脉冲信号,探头层间符合线路对每个探头信号的时间耦合性进行检验判定,排除其它来源射线的干扰,经运算给出正电子的位置,计算机采用散射、偶然符合信号校正及光子飞行时间计算等技术,完成图像重建。重建后的图像将PET的整体分辨率提高到2 mm左右。
PET采用符合探测技术进行电子准直校正,大大减少了随机符合事件和本底,电子准直器具有非常高的灵敏度(没有铅屏蔽的影响)和分辨率。另外.BGO晶体的大小与灵敏度成正相关性。块状结构的PET探头。能进行2D或3D采集。2D采集是在环与环之间隔置铅板或钨板,以减少散射对图像质量的影响 2D图像重建时只对临近几个环(一般2-3个环)内的计数进行符合计算,其分辨率高,计数率低;3D数据采集则不同。取消了环与环之间的间隔,在所有环内进行符合计算,明显地提高了计数率,但散射严重,图像分辨率也较低,且数据重组时要进行大量的数据运算。两种采集方法的另一个重要区别是灵敏度不同,3D采集的灵敏度在视野中心为最高。
二、多层螺旋CT的工作原理
CT的基本原理是图像重建,根据人体各种组织(包括正常和异常组织)对X射线吸收不等这一特性,将人体某一选定层面分成许多立方体小块(也称体素)X射线穿过体素后,测得的密度或灰度值称为象素。X射线束穿过选定层面,探测器接收到沿X射线束方向排列的各体素吸收X射线后衰减值的总和,为已知值,形成该总量的各体素X射线衰减值为未知值,当X射线发生源和探测器围绕人体做圆弧或圆周相对运动时。用迭代方法
求出每一体素的X射线衰减值并进行图像重建,得到该层面不同密度组织的黑白图像。
螺旋CT突破了传统CT的设计,采用滑环技术,将电源电缆和一些信号线与固定机架内不同金属环相连运动的X射线管和探测器滑动电刷与金属环导联。球管和探测器不受电缆长度限制,沿人体长轴连续匀速旋转,扫描床同步匀速递进(传统 CT扫描床在扫描时静止不动),扫描轨迹呈螺旋状前进,可快速、不间断地完成容积扫描。
多层螺旋CT的特点是探测器多层排列。是高速度、高空间分辨率的最佳结合。多层螺旋CT的宽探测器采用高效固体稀土陶瓷材料制成。每个单元只有 0.5、1或 1.25 mm厚,最多也只有5 mm厚薄层扫描探测器的光电转换效率高达99%能连续接收X射线信号。余辉极短,且稳定性好。多层螺旋CT能高速完成较大范围的容积扫描,图像质量好,成像速度快,具有很高的纵向分辨率和很好的时间分辨率。大大拓宽了CT的应
用范围,与单层螺旋CT相比。采集同样体积的数据,扫描时间大为缩短,在不增加X射线剂量的情况下,每15 S左右就能扫描一个部位;5S内可完成层厚为3 mm的整个胸部扫描;采用较大的螺距 P值,一次屏气20 S,可以完成体部扫描;同样层厚,同样时间内,扫描范围增大4倍。扫描的单位时间覆盖率明显提高,病人接受的射线剂量明显减少,x线球管的使用寿命明显延长,同时,节省了对比剂用量,提高了低对比分辨率和空间分辨率,明显减少了噪声、伪影及硬化效应。另外,还可根据不同层厚需要自动调节X射线锥形线束的宽度,经过准直的X射线束聚焦在相应数目的探测器上探测器通过电子开关与四个数据采集系统(DAS)相连。每个DAS能独立采集完成一套图像,按照DAS与探测器匹配方式不同。通过电子切换可以选择性地获得1层、2层或4层图像,每层厚度可自由选择(0.5、1.0、1.25 mm或 5、10 mm。采集的数据既可做常规图像显示,也可在工作站进行后处理,完成三维立体重建、多层面重建、器官表面重建等,并能实时或近于实时显示。另外.不同角度的旋转、不同颜色的标记,使图像更具立体感更直观、逼真。仿真内窥镜、三维CT血管造影技术也更加成熟和快捷。
三、 PET-CT的图像融合
PET与CT两种不同成像原理的设备同机组合,不是其功能的简单相加。而是在此基础上进行图像融合,融合后的图像既有精细的解剖结构又有丰富的生理.生化功能信息能为确定和查找肿瘤及其它病灶的精确位置定量、定性诊断提供依据。并可用X线对核医学图像进行衰减校正。
PET-CT的核心是融合,图像融合是指将相同或不同成像方式的图像经过一定的变换处理使它们的空间位置和空间坐标达到匹配,图像融台处理系统利用各自成像方式的特点对两种图像进行空间配准与结合,将影像数据注册后合成为一个单一的影像。 PET-CT同机融合(又叫硬件融合、非影像对位)具有相同的定位坐标系统,病人扫描时不必改变位置,即可进行 PET-CT同机采集,避免了由于病人移位所造成的误差。采集后两种图像不必进行对位、转换及配准,计算机图像融合软件便可方便地进行
2D、3D的精确融合,融合后的图像同时显示出人体解剖结构和器官的代谢活动,大大简化了整个图像融合过程中的技术难度、避免了复杂的标记方法和采集后的大量运算,并在一定程度上解决了时间、空间的配准问题,图像可靠性大大提高。
PET在成像过程中由于受康普顿效应、散射、偶然符合事件、死时间等衰减因素的影响,采集的数据与实际情况并不一致,图像质量失真,必须采用有效措施进行校正,才能得到更真实的医学影像。同位素校正得到的穿透图像系统分辨率一般为12 mm、而 X线方法的穿透图像系统分辨率为1mm左右图像信息量远大于同位素方法。用 CT图像对 PET进行衰减校正使 PET图像的清晰度大为提高,图像质量明显优于同位素穿透源校正的效果(请看图2),分辨率提高了 25%以上,校正效率提高了 30%,且易于操作。校正后的 PET图像与 CT图像进行融合,经信息互补后得到更多的解剖结构和生理功能关系的信息对于肿瘤病人手术和放射治疗定位具有极其重要的临床意义。
关于ct 设备原理到此分享完毕,希望能帮助到您。