深圳市亚锐智能科技有限公司
深圳市福田区沙头街道天安社区泰然六路泰然苍松大厦五层北座501-3
(86)755 8272 2836
Robert
14137848
zzqrob
Sales@szarray.com.cn
大家好,感谢邀请,今天来为大家分享一下热CT设备的问题,以及和双源CT详细资料大全的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
本文目录
英文全称为Dual Source CT(DSCT),是一种通过两套X射线球管系统和两套探测器系统同时采集人体图像的CT装置。
基本介绍中文名:双源CT外文名:dual-source computer tomography专业:医学成像技术背景,CT技术发展历史,DSCT开发背景,结构,工作原理,套用,辐射剂量,结语与展望,背景自英国工程师 Hounsfield于 1972年研制成功第一台 CT机起,医学影像领域出现了一次又一次的技术革命。 2004年以前,CT技术的发展主要是在球管和探测器运动方式以及射线束覆盖范围上的变革,直至 2005年西门子推出全球首台双源 CT( dua-l source computer tomography, DSCT),使得 CT成像技术才有了更进一步的发展,CT心血管成像才能与数字减影血管造影( digital subtraction angiography,DSA)相媲美,并极大地降低了常规 CT心血管成像假阳性的机率。 2006年中国北京协和医院率先引进了中国第一台双源CT。目前除开展一些常规检查外,主要还用于心血管检查、肺结节的计算机辅助检测、胸痛三联征检查、体部灌注成像和结肠仿真内镜等,均取得了良好的效果。开展的研究性工作主要是利用其独有的双能量成像技术,包括体内结石成分及性质的鉴别、肌腱与韧带的 CT重建成像、急性肺栓塞的早期诊断。 CT技术发展历史 CT技术的发展按 X射线束的形状及扫描方式不同,被公认为经历了以下 5次大的技术变革:单束平移-旋转方式;窄扇形束-平移旋转方式;宽扇形束旋转-方式;宽扇形束静止-旋转方式;电子束 CT。 20世纪 80年代主要是扫描速度的角逐,在此期间,碳刷和滑环技术的出现促成了螺旋 CT的诞生,并迅速取代了单一的横断面 CT。 20世纪 90年代至21世纪初,CT技术的发展又以努力增加纵轴覆盖范围为目标,先后出现了 4/16/32/40层 CT机。直到 2004年,西门子推出全球首台 64层螺旋 CT机( SOMATOM Sensation 64)。此后,鉴于诸多机械制造方面的限制,许多专家认为 CT机已发展到了极点。但次年西门子在北美放射学年会( RSNA)上又推出了全球首台 DSCT系统( SOMATOM De finition),彻底打破了传统的 CT技术理念,引发了 CT史上的一次新革命。 DSCT开发背景 CT自诞生后很快就被套用于临床检查,尤其是螺旋 CT出现后被广泛套用于人体各个部位的检查和诊断。但对于运动器官如肺、胃肠道、大动脉,尤其是心脏来说,一次检查必须要求在有限的时间内完成,且要尽可能保证扫描期间患者无呼吸运动。否则,轻者会出现影像模糊、锯齿状伪影,重者根本得不到具有诊断意义的图像,检查无法完成。另外,空间解析度也是一个重要参数,同样影响诊断的正确率。鉴于以上技术限制,西门子抛开了传统的技术理念,在成熟的 SOMATOM Sensation 64技术和 Straton零兆金属球管的基础上,在机架内整合了两套64层图像数据采集系统,使得整个机架在完成 90b旋转后即可获得一幅优质影像。机架旋转 1周为0. 33 s,但只需完成 90b旋转后即可完成图像采集,所以其时间解析度达到了 83 ms,实现了单扇区数据的采集和重建,克服了”多扇区重建技术“带来的诸多弊端,极大地提升了图像质量,提高了诊断正确率,这套装置即为世人注目的 DSCT。图1德国西门子双源CT结构结构 DSCT整机基本构成包括 2个主机电气柜( 1主1辅)、机架、检查床、水冷系统、成像控制系统( imagecontro l system, ICS)、图像重建系统( im age reconstructionsystem, IRS)及图像后处理系统等。核心部分主要是 2套既相互独立,又相互联系的数据采集系统。主要有 2个相互独立的高压发生器 A和 B,2个 Straton零兆金属球管 A和 B,2组超高速稀土陶瓷探测器 A和B及 2套相对应的数据采集装置 A和 B组成。除 2套探测器因受机架内可利用有效空间的限制,横向上的长度不同,故而导致有效探测野( FOV)不同外,其余同类部件完全相同。高压发生器 2个,每个最高功率可达 80 kW,当DSCT 2套采集系统同时工作时,最高功率可达 160kW,远高于普通 64层 CT机。 X线球管 2个,球管 A和球管 B均是西门子拥有专利技术的 Straton零兆金属球管,最大电压 140kV,最大功率 80 kW,最大电流 666 mA,包括 X射线管组件、偏转电子系统和冷却装置。转子部分直接由发动机驱动,并在较大程度上旋转对称。阴极带有可选择设定的独立发射系统、偏转电子系统,实现了 Z轴方向上的飞焦点技术,焦点额定值为 0. 6*0. 6及 0. 8* 0. 9。冷却系统是单独的机械组件,不同于 X射线管组件,通过可以弯曲的油管相连。阳极靶面直接与循环油相接触,因而实现阳极直接冷却,阳极热容量高达 6. 5 MHU/min( 4. 8 MJ/min),堪称“零兆球管”。用户在使用中完全不必再为球管的热容量担心,可以实现高功率、大范围的连续扫描,甚至可以在保证空间解析度的前提下一次性完成对患者的全身扫描。 2组超高速稀土陶瓷探测器,每组均由 40排探测器组成,中间32排准直宽度为 0. 6 mm,两边各有4排准直宽度为 1. 2 mm的探测器。其中一个弧度为约 60b的主探测器组,且与球管 A相对应,另一个弧度为约 32b的辅助探测器组,与球管 B相对应。由于机架内部空间有限,使得 2套探测器横向长度不同,因此扫描覆盖野不同。 DSCT具有 78 cm的大机架孔径及 200 cm的扫描范围,扩展了临床的套用范围。机架运动部分和多螺旋 CT一样,也是采用了碳刷和低压滑环技术,但与它们不同的是旋转部分采用了电磁直接驱动技术。工作原理两套X射线的发生装置和两套探测器系统呈一定角度安装在同一平面,进行同步扫描。两套X射线球管既可发射同样电压的射线也可以发射不同电压的射线,从而实现数据的整合或分离。不同的两组数据对同一器官组织的分辨能力是不一样的,通过两组不同能量的数据从而可以分离普通CT所不能分离或显示的组织结构。即能量成像。如果是两组数据以同样的电压的电流值扫描则可以将两组数据进行整合,快速获得同一部位的组织结构形态,突破普通CT的速度极限。 DSCT有两种工作模式,即单源模式和双源模式,均可通过控制台进行相关设定。单源模式时主要数据采集与重建系统 A工作,数据采集与重建系统B处于关闭状态。此时与一台普通 64层 CT机无异,即由球管 A发射 X射线,经受检者衰减后被探测器 A接收,然后再经相应的图像处理和重建后产生相应部位的 CT图像。1次扫描(即 1个采集周期)球管和探测器组至少要旋转 180b才能获得足够的数据,重建出图像,最多可获得 64层图像。定位像及头颈部、胸腹部及四肢等一些常规平扫、增强扫描常采用单源模式。双源模式时, 2套数据采集与重建系统同时工作,2套球管与探测器组合,各自独立发射及接收射线,独立完成图像处理,但在图像重建时,由 2套采集系统获得的数据既可以重建出 2组独立的图像,也可以重建出 1组融合的图像,前者 1个采集周期与单源模式相同,即球管和探测器组至少要旋转 180b,主要用于骨骼及钙化的分离、鉴别组织与胶原成分等;后者 1个采集周期球管和探测器组只需旋转 90b,由 2组数据采集系统获得的 2组数据经相应的数学运算、组合后即可实现单源下旋转 180b的效果,但时间解析度提高了 1倍,主要用于心脏等时间解析度要求极高的检查。套用传统螺旋CT由于仅有一套X射线发生装置和一套探测器系统,所以在扫描高速运动物体时(比如冠状动脉)将会显得力不从心。通常情况下,工程师通过加快CT的旋转速度来提高CT对运动物体的扑捉能力,但是受限于工业水平和CT旋转时产生的巨大离心力,目前最快的CT也只能达到0.27秒旋转一圈。双源CT系统图2双源CT成像图同时使用了2个射线源和2个探测器系统,能够以83ms的时间解析度采集与心电图同步的心脏和冠状动脉图像。该系统能够在不需要控制心率的情况下,对高心率、心率不规则甚至心律不齐患者进行心脏成像。同时,2个射线源能够输出不同能量的X射线。利用双能曝光技术明显改善CT的组织分辨力。 DSCT单从结构上看与普通 CT机差别不大,但从临床套用分析的某些方面却有着普通 CT机不可比拟的优势。心脏成像 DSCT最大的优势在于心脏成像方面。双能量成像即在两种不同的能量下成像。其依据是不同成分的组织在不同的 X射线能量照射下表现出的 CT值不同,再通过图像融合重建技术,可得到能体现组织化学成分的 CT图像,即组织特性图像。普通扫描对于普通检查,DSCT只用数据采集系统 A,数据采集系统B处于关闭状态,此时相当于一台普通的 64层 CT机。辐射剂量 CT的辐射问题早已受到了广泛的关注。尽管现有的CT设备一般都会将辐射剂量控制在安全剂量范围内,但我们仍然希望CT检查时的辐射剂量能够越低越好。尽管双源CT系统使用2套X线球管系统和2套探测器组,但其在心脏扫描中的射线剂量都只有常规CT的50%。由于其具备很高的时间解析度,能够在一次心跳过程中完成采集心脏图像,从而使利用多扇区重建的大剂量扫描方法成为过去。另外,双源CT采用了依据心电图的适应性剂量控制,最大程度地降低了心脏快速运动阶段的放射剂量。这些技术的综合使用使图像的采集速度和效率提高了1倍,即使与能量效应最高的单能扫瞄器相比,双源CT在正常心率条件下的放射剂量将至少降低50%。结语与展望 DSCT是基于西门子成熟的 64层 CT技术之上的崭新设备,在扫描速度、时间解析度和空间解析度上有了更高的突破,其整体优越的性能主要依赖于Straton零兆金属球管、电磁直接驱动技术、静音扫描技术、特殊散射线校正重建技术、特殊的射线剂量调控技术,特别是适应性心电门控剂量调控技术的套用。在冠状动脉成像方面有着普通CT机不可比拟的优势,双能量成像方面也有其独到的优势,但由于诸多亟待解决的问题,其临床实际价值尚需大量的临床验证。但从总体上说,DSCT是CT技术上的一次新革命,其开创了 CT史上的新纪元。CT选型参数指电流互感器的型号和主要参数。
一、电流互感器型号:
第一字母:L—电流互感器
第二字母:A—穿墙式;Z—支柱式;M—母线式;D—单匝贯穿式;V—结构倒置式;J—零序
接地检测用;W—抗污秽;R—绕组裸露式
第三字母:Z—环氧树脂浇注式;C—瓷绝缘;Q—气体绝缘介质;W—与微机保护专用
第四字母:B—带保护级;C—差动保护;D—D级;Q—加强型;J—加强型ZG
第五数字:电压等级产品序号
二、主要技术要求
1、额定容量:额定二次电流通过二次额定负荷时所消耗的视在功率。额定容量可以用视在功率V.A表示,也可以用二次额定负荷阻抗Ω表示。
2、一次额定电流:允许通过电流互感器一次绕组的用电负荷电流。用于电力系统的电流互感器一次额定电流为5~25000A,用于试验设备的精密电流互感器为0.1~50000A。
电流互感器可在一次额定电流下长期运行,负荷电流超过额定电流值时叫做过负荷,电流互感器长期过负荷运行,会烧坏绕组或减少使用寿命。
3、二次额定电流:允许通过电流互感器二次绕组的一次感应电流。
4、额定电流比(变比):一次额定电流与二次额定电流之比。
5、额定电压:一次绕组长期对地能够承受的最大电压(有效值以kV为单位),应不低于所接线路的额定相电压。电流互感器的额定电压分为0.5,3,6,10,35,110,220,330,500kV等几种电压等级。
6、10%倍数:在指定的二次负荷和任意功率因数下,电流互感器的电流误差为-10%时,一次电流对其额定值的倍数。10%倍数是与继电保护有关的技术指标。
7、准确度等级:表示互感器本身误差的等级。电流互感器的准确度等级分为0.001~1多种级别,与原来相比准确度提高很大。用于发电厂、变电站、用电单位配电控制盘上的电气仪表一般采用0.5级或0.2级;用于设备、线路的继电保护一般不低于1级。
8、比差:互感器的误差包括比差和角差两部分。比值误差简称比差,一般用符号f表示,它等于实际的二次电流与折算到二次侧的一次电流的差值,与折算到二次侧的一次电流的比值,以百分数表示。
9、角差:相角误差简称角差,一般用符号δ表示,它是旋转180°后的二次电流向量与一次电流向量之间的相位差。规定二次电流向量超前于一次电流向量δ为正值,反之为负值,用分(’)为计算单位。
10、热稳定及动稳定倍数:电力系统故障时,电流互感器受到由于短路电流引起的巨大电流的热效应和电动力作用,电流互感器应该有能够承受而不致受到破坏的能力,这种承受的能力用热稳定和动稳定倍数表示。
热稳定倍数是指热稳定电流1s内不致使电流互感器的发热超过允许限度的电流与电流互感器的额定电流之比。动稳定倍数是电流互感器所能承受的最大电流瞬时值与其额定电流之比。
扩展资料:
1、变比
应根据一次负荷计算电流IC选择电流互感器变比。电流互感器一次侧额定电流标准比(如20、30、40、50、75)等多种规格,二次侧额定电流通常为1A或5A。其中2×a/C表示同一台产品有两种电流比,通过改变产品的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2×a/C。
一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。
2、准确级
应根据测量准确度要求选择电流互感器的准确级并进行校验。准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。
为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:S2≤S2n。
参考资料来源:百度百科——电流互感器
cT(Computed Tomography)即计算机体层摄影,是目前人体内部组织器官解剖形态结构的最主要的影像手段系统,尤其是检查有密度和形态变化的疾病敏感病灶,由它引起的影像诊断技术的革命推动了医学迅速发展。
cT机的组成主要有x线(x-ray)发生系统、信号接收系统(探测器)、电子计算机处理系统(信号处理和图像重建)及辅助设备(监视器、照相机等),其核心装置是CT球管。,C丁磅箩,包捃x光杰11璩管)的工作原理
1.1 CT球管的结构
CT球管主要垂管芯?管套?高压电路、循琢冷却系统等几部分组成。而管芯又是由杯状阴极灯丝、旋转阳极钼基钨靶、高速轴承、附属散热装置等部件组成。
1.2 cT管工作原理
CT球管实际上是一个大的高真空的阴极射线二极管,是产生x线的系统,其工作过程为:由12V电流供于阴极灯丝加热,并产生自由电子云集,这时向阴阳两极加40一150kV高压电时,电势差陡增,在高压强电场驱动下,处于活跃状态的自由电子束,由阴极高速撞
击阳极钼基钨靶,并发生能量转换,约l%的电能形成了x线,由窗口发射,99%则转换为热能,由散热系统散发。
x线是一种有很强穿透力的短电磁波,且电压愈高穿透力愈强。x线在穿透物质过程中会被部分的吸收即衰减,这是X线成像的物理学基础。利用这一原理使人体的组织产生不同衰减的射线投影,使胶片的溴化银感光经显影呈黑色;而未感光的溴化银,经定影冲洗为透明白色,由此产生了黑白影像,这就是摄影效应。另外x线的穿透程度或者说被吸收衰减程度还与被照物的密度和厚度相关,成像上所显示的黑白影的层次差异代表人体组织的密度差异,密度越高,吸收越多,穿透越少,感光越少,图像越白;反之则越黑。人体组织发生病变时密度也发生变化,其影像的黑白影也随之变化,这就是影像诊断原理。以上为模拟影像技术,目前x线影像技术已与计算机结合发展为数字化x线成像技术,如CR(computed Radiography)计算机X线摄影术和DR(DigitalRadiogra曲y J数字ft x线摄影术等o
好了,文章到这里就结束啦,如果本次分享的热CT设备和双源CT详细资料大全问题对您有所帮助,还望关注下本站哦!